Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations May-2022 ENGINEERING PHYSICS

	(Mechanical Engineering)			
Time: 3 hours		Max.	Marks: 60	
(Answer all Five Units $5 \times 12 = 60$ Marks)				
UNIT-I				
1	a Explain how the wavelength of light source is determined by forming Newton's rings.	L2	8M	
	b In a Newton's ring experiment, the diameter of the 8 th dark ring was 0.375cm and the diameter of the 18 th dark ring was 0.675cm. If the wavelength of the light used is 6200 x 10 ⁻⁸ cm then, find the radius of curvature of the plano-convex lens. OR	L1	4M	
2	Summarize the Fraunhoffer diffraction due to double slit and derive the condition for principal maxima, secondary maxima and minima. UNIT-II	L3	12M	
3	 a Define the following: (i) unit cell (ii)coordination number (iii) packing factor b Explain the various types of crystal systems with neat diagrams 	L1 L2	5M 7M	
	OR			
4	a Sketch the crystal planes for the following Miller indices (i) 101 (ii) 010 (iii) 100	L3	6M	
	b State and explain Bragg's law of X-ray diffraction.	L2	6M	
_	UNIT-III			
5	a Describe the basic requirements of acoustically good hall give their remedies.	L2	6M	
	b Define the absorption coefficient of sound and derive the expression for it. OR	L3	6M	
6	a Explain the piezoelectric method to produce ultrasonic waves.	L2	6M	
	b Summarize the detection methods of ultrasonic waves.	L2	6M	
	UNIT-IV			
7	a Elaborate the behavior of a wire under an increasing load.	L6	6M	
	b Classify different types of beams.	L2	6M	
	OR			
8	a Develop the relation between the Young's modulus and bulk modulus.	L6	6M	
	b Derive an expression for energy stored per unit volume in stretched string. UNIT-V	L3	6M	
9	a What is Meissner effect? Explain.	L2	6M	
	b Explain the Josephson effect in superconducting materials.	L2	6M	
	OR			
10	a Summarize the ball milling technique to prepare nanomaterials.	L2	6M	
	b List the applications of nanomaterials in various fields.	L1	6M	